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ABSTRACT 

We set up an explicit dual multiperipheral model, which is similar 

to the models of Huan Lee, Veneziano, and Chan and Paton, but explicitly 

takes into account the deferred thresholds arising from the production of 

resonance clusters. We assume that there are two such clusters, one 

with (mass)’ = 0. 5 GeV2 (p. w, E.. . ) and the other with (mass)2 = 1.5 

GeV’ (f, B, D, AZ.. . ). At lower energies only the first plays any role, 
LYA - 1 

and we find that the total vacuum-state cross section u a s P on the 

average, where ,$- 0.85. For s 2 50 GeV’, on the other hand, the second 

cluster also comes in, and oflattens out. This behavior has all the 

features of the experimental data and is thus a completely satisfactory 

alternative to the conventional description in terms of the P and f. In 

addition, all of the parameters describing our vacuum singularities can be 

calculated a priori in our model, and are in reasonably good agreement 

with the data. 
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I. INTRODUCTION 

During the past several years, multiperipheral models have been 

used extensively in describing high-energy phenomena, either directly, 

or as first order terms in more elaborate schemes. Most of these models, 

have been either purely phenomenological, or have been based on single 

pion exchange. 
1 The latter, however, have had considerable difficulty 

in generating output Regge trajectories with sufficiently high intercepts. 
2 

It is clear that Reggeon exchanges also play an important role in high- 

energy production. 

One of the most promising approaches to an understanding of high- 

energy scattering is the dual multiperipheral model. This was originally 

3 4 
proposed by Huan Lee, Veneziano, and Chan and Paton. 

5 
Recently, 

6 
more detailed calculations have been made by Chan, Paton, Tsou and Ng, 

who also made additional duality assumptions. They find semi-quantitative 

agreement with experiment, and, in particular, are able to explain the 

small slope of the Pomeron trajectory in a natural way. One problem with 

all these approaches, however, has been that the f trajectory is not generated 

in the vacuum state along with the Pomeron (P). 
7 

We shall see, however, 

that if we take into account the thresholds resulting from the production 

of more than one resonance cluster, we generate a set of complex singularities 

whose net effect is to give a cross section very similar to the one given 

by the conventional P + f description below ISR energies. Some of our 

results were presented earlier. 
8 

In this paper we discuss them in more 
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detail and at the same time present additional results. 

In Sec. II we review briefly the dual multiperipheral approach and 

in Sec. III we write down a specific model. In Sec. IV, the self-consistency 

requirement that the Reggeon be correctly reproduced is used to fix the 

parameters of our model. In Sec. V we use our model to generate the 

Pomeron in the case where only one type of cluster is produced; this gives 

a description which is valid only at moderate energies. InSec. VIwe 

consider a two-cluster version which is applicable at much higher energies. 

In Sec. VII we study the effect of the deferred threshold for the production 

of a higher-mass cluster; we find a cross section similar to one which 

is given by the conventional P + f. In Sec. VIII we estimate the effect of 

diffractive corrections at moderate energies and find that, although this 

changes the overall magnitude of our cross section, it does not change its 

energy dependence. Finally in Sec. IX we use our model to calculate 

the overall magnitude of the vacuum-state contribution to the pp cross 

section. 
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II. TIIE DUAL MULTIPERIPHERAL APPROACH 

As in any multiperipheral scheme, we shall assume that the amplitude 

for the production of clusters is given by diagrams of the type shown in 

Fig. 1. By using multiparticle unitarity we obtain from these a two-body 

absorptive part given by the sum of ladder diagrams of Fig. 2. In the 

simplest multiperipheral models the horizontal lines are single Regge 

exchanges (Y D 
e 

In a dual multiperipheral model, on the other hand, they 

are always linear combinations of exchange-degenerate sets of Regge 

exchanges. According to the usual rules of quark-duality diagrams, two 

kinds of diagrams can now arise:6 

(A) If we are interested in generating Reggeons we only have uncrossed 

(planar) quark-duality diagrams of the type shown in Fig. 3. The exchanges 

then correspond to Regge propagators 

R =e 
-irae Qe(t ) 

S (2.1) 

This would arise, for example, if we have exchange-degenerate p +f 

exchange. 

(B) If we are interested in generating the Pomeron we must also 

have crossed (nonplanar) loops of the type shown in Fig. 4. According 

to the usual quark-diagram rules, the two Reggeons in a given loop must 

either be both uncrossed or both crossed. In the latter case we then have 

a Reggeon propagator 

R = Is 
cue&) 

(2.2) 
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This would arise, for example, if we took the difference of exchange- 

degenerate p and f exchange, a combination which would arise in the 

exotic I = 2 state of ~l~i scattering. In the Chan et al. 
6 

and Chew and 

7 
Rosenzweig approaches the uncrossed loops are summed first, and then 

used as inputs in sums over crossed loops to generate the Pomeron. 

In the present paper we shall sum over the uncrossed and crossed loops 

simultaneously so that we have essentially a two-channel problem. 

We will only consider the simple case of isospin symmetry (say, 

TTTT scattering). The crossed and uncrossed loops can then be written in 

terms of the Chan-Paton factors9 as POC and (PO + P,)U where P 0’ p1 

are t-channel isospin It = 0, 1 projection operators and C and U are loop 

integrals involving the factors (2. 1) and (2. 2), which are independent of 

internal quantum numbers. Note that the crossed diagram contributes 

only to It = 0 whereas the uncrossed diagrams contribute to both isospin 

states. 

The above picture of the Pomeron is, of course, somewhat oversimplified. 

A more systematic approach would incorporate SU(3) and be based on the 

i/N expansion of Veneziano. 
10 

We do not expect our results to be changed 

very much by this, however. 

In order to obtain an additional constraint on our model, we shall 

make the assumption that the clusters (the vertical lines of Fig. 2) are 

dual in a finite-energy sum rule (FESR) sense to Regge behavior. (see 

Fig. 5). This sort of constraint on sums of ladder graphs was first used 
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a number of years ago in a pion-exchange model, 
11 

and has recently 

been applied to the dual multiperipheral model by Chan, Paton, Tsou and 

Ng. 
6 

If F represents the coupling of the cluster to the external Reggeon 

lines of Fig. 5 it leads to a relation of the form 

r(ti, t2, t+‘, t2’, t) = F(t)gl(tis tl’> t,)g,(t,> t2’> t) (2.3) 

where g, and g2 are triple-Regge couplings and F is a purely kinematic 

factor. We shall argue in Sec. IV that F is an approximately universal 

factor, which is not only independent of the external Reggeon lines but 

also of t 
1’ t2’ tl” t2’. We can therefore set F = F(t). This means that 

P factorizes, which permits us to simplify considerably the problem of 

summing the diagrams of Fig. 2. 

Although Eq. (2.3) gives a relation between F and g1g2, it should 

perhaps be emphasized that it does not actually correspond to replacing 

Fig. 5(a) by 5(b), as was done in refs. 6 and 7. We find that the latter 

approximation is too crude and, in particular, leads to a somewhat different 

output singularity structure than the one obtained by our model. 
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III. A MULTIPERIPHERAL MODEL 

The model we will consider is a standard multi-Regge model similar 

to that of Chew, Goldberger and Low 
12 

but applied to the production of 

clusters. Specifically we assume that the absorptive part A(t, s) of the 

process 12 - 1’2’ is given by Fig. 6. If we assume that, except for the 

end clusters R and Q, only one type of narrow-resonance cluster of mass 

Ga is produced, A(t, s) is built up by linking the graphs of Fig. 5(a), 

which gives a contribution 

v(t,s) = ra6(s - sa) . (3.4) 

We will take sa z 0.5 GeV2, which corresponds to the p, W, E.. . peaks, 

and assume that the horizontal lines of Fig. 6 correspond to the exchange 

of a single effective Reggeon with trajectory 

se(t) = 0.25+t . (3. 2) 

This can be thought of as some kind of average of the pion and the leading 

Reggeon with trajectory LY = 0. 5 + t, both of which would contribute in a 

more realistic description. 

The problem simplifies considerably if we take the Mellin transform 

of A 

x 
m AH, j) = ds s-j-‘A(t, s) . (3.3) 
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From Eqs. (3.1) and (2.3) 

V(t, j) = g(tit2t1g(tI’t2’tlFa(tIs -j-i 
. a (3.4) 

We will consider the t-channel isospin It = 0 state, where g is the ae-ae-f 

triple-Regge coupling. Since Eq. (3.4) factorizes, the diagrams of Fig. 6 

are separable in the usual high-energy approximation and 

Act, j) = Yll,f(tbR 
-j-1 

FR(t)B(t, j)FQ(t)sQ 
-j-i 

Y22’f(t) (3. 5) 

where Yil,f and YZZlf are the Il’f and 22’f Regge couplings, KR, v%- 
Q 

are the masses of R and Q, and 

B(t, j) = K(t, j) + K(t, j )F,(t )sa-jeiK(t, j) + * * * 3 (3.6) 

as can be seen from Fig. 7 and Eq. (3.4). The function K(t, j) has the 

general structure 

K(t, j I = / gRRg 9 (3.7) 

where R is given by Eq. (2.1) or (2.2). It has a logarithmic branch point 

at j = Gc(t) = 2ne( $t) - 1, corresponding to double-Regge exchange. If 

we approximate this by a pole at j = cut(t) we then have 

K(t, .i) = j -“&‘“:t, x(t) 
at(t) -j 

c 
(3.8) 
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cy 
The factor x ’ 

-j 
is an effective threshold term, as can be seen by taking 

the inverse Mellin transform of Eq. (3. E), which gives 

K(t, s) = k(t)s 
qt) 

ets -x) , (3.9) 

where 6 is the usual step function. It arises from the fact that the momentum 

transfers of the Regge exchanges are limited. This is shown explicitly 

in Appendix A for the specific case of pion exchange (a e = 0) but is actually 

true for a broad class of models. The function k(t) has the form 

k(t) = I dt’dt”(-A )-- 0 (-A )g2(t’, t”, :. t)x(t’, t”) (3.10) 

where A = t2 + t12 + tfT2 - 2(tt’ + tt” + tit”), and X depends on the signature 

factors. 

Because of tmin effects, Eqs. (3.9) and (3.10) are actually a simplified 

version of the true behavior of K(t, S) , which is more complicated for small 

s. However, since this complicated region is relatively small, it should be 

a reasonable average approximation if x is treated as an adjustable quantity, 

at least for the purpose of obtaining the Mellin transform. This will be 

discussed in more detail elsewhere. 

Eq. (3.6) can be explicitly summed to give 

B(t, j) = K(t,j)/B(t, j) (3.11) 

where 



-9a- FERMILAB-Pub-761 56-THY 

D(t, j) = 1 - sa -j-‘Fa(t)K(t, j) 

The function B will have a pole at j = cu(t) if 

D(t, a(t)) = 0 

The corresponding residue is then 

(3.12) 

(3.13 1 
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c,‘(t) = W, cYY,l[ mt, a)/ &Y] (3.14) 

From Eq. (3. 5) the corresponding residue of A(t, j ) is 

where 

Yii,cu(t) = y,i,f(t)sR-rr-lFR(t)c,(t)~ 

(3.15) 

(3.161 

and similarly for y22, cy. 

IV. SELF-CONSISTENCY CONDITION FOR REGGEONS 

If we are interested in generating Reggeons, only the propagators 

(2.1) come in and so 

irr 
m’, t”) = e c 

cze(t’ 1 - ae(t”l 1 (4.1) 

in Eq. (3. 10). Now triple-Regge fits I3 suggest that g(t, t, 0) = Constant 

for small t. We will go further and assume that g(t’, t”, t) = Constant. 

We can then evaluate the integral (3. 10) by changing variables to u and z, 

where 

L 
t’, t” = u+$t*z(ut)” , (4.2) 

sothat-a iu<Oand-1<z<1. Since the approximation g2 z Constant 

in fact breaks down for large momentum transfers we will put in a straight 
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cutoff in u at u = -7. For small t, Eq. (3. 10) then gives 

k(t) = kf(t) E kO[l + $sTt+ O(t2)1 . (4.3) 

We will fix k. and 7, as well as x(O) and x’(O), by the requirement 

that Eqs. (3. 13) and (3.16) are satisfied with cy = af = 0. 5 + t and 

Yil’ 1 = Ylllf’ Note that yll,f then cancels in Eq. (3. 16) giving 

-a - 1 -1 
‘R f FR(t) = c f (t) (4.4) 

Eqs. (3.13) and (4.4) are therefore conditions only on the internal couplings 

of the model and would be the same irrespective of the external lines in 
-lY -1 

Fig. 6. From Eq. (4.4) this in turn means that s R 
f 

FR(t) is a 

universal function, independent of the external lines. In particular, if 

the external lines are themselves Reggeons (as in Fig. 5) rather than 

ordinary particles, this means that FR(t) must be independent of 

ti’ t2, ti’, t2’. 
-0 -1 

Since sR f FR(t) is independent of the external lines there is 

no loss of generality if we restrict ourselves to TTT or Reggeon-Reggeon 

scattering,for both of which R = a. 

(A) In the case of TTV scattering, a conventional first-moment 

finite-energy sum rule (FESR) gives 

I 
N 

A(t, s)vdv = yznnfN 
cy +2 f 

0 
kYf + 2) (4.5) 



-12- FERMILAB-Pub-76/ 56-THY 

where y = *(s - u) E s + *t, and N is a point halfway between resonances. 

If we restrict ourselves to a single narrow resonance at s = sa( = m 

A(t, s) is given by Eq. (3. 1) and a comparison with Eq. (2. 3) gives 

F,(t) z (sa + St, N /bf + 2) 

with N = 2s + ft, the point halfway between the p and f resonances. If 
a 

we now impose the conditions (3.13) and (4.4) with cy = af and R = a, we 

obtain k 0 
= 2. 50, 7 = 0. 54, x(O) = 7. 1 and x’(O) = 1.73 x(0). 

(B)For 0 - 
e 

(ye scattering (Fig. 5) we used an approximate version 

of an FESR in which we essentially integrated over the external momentum 

transfers and dropped logarithmic terms. We then have 

F,(t) Y sa 
actt 1 

ND - (yc + I/(@ _ wc +I) 
(4.7) 

with N z 2sa if we set v z S. This time we obtain k. = 1.92, T = 0. 39, 

x(O) = 5.4 and x’(O) = 0. 69 x(O). We will see that our final results will 

not depend too much on the prescription we use. 
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V. POMERON PARAMETERS IN THE ONE-CLUSTER MODEL 
AND MODIFIED f/P UNIVERSALITY 

If we wish to generate the Pomeron in the t-channel, we must include 

the non-planar graphs of Fig. 4 in addition to the planar graphs of Fig. 3, 

and so, from Eqs. (2.1) and (2. Z), 

wt ’ > t”) = 1 + e 
iTi[ne(tfi ) - Q,(t”)] 

(5.1) 

in Eq. (3.10). If we make the same assumptions as in Sec. IV, Eq. 

(3. 10) then gives 

k(t) = k (t)- P k (5.2) 

where k. and7 , as well as x(O) and x’(O) are the same as in Sec. IV. 

The Pomeron ($) trajectory is now given by Eq. (3.13) with 

r~ = “8 and the corresponding coupling by Eq. (3. $6). which gives 

-ah - 1 
Y&t) = yi1 ,f@) ‘R 

P 
FR(t k $t ). (5.3) 

In the case of dill scattering, for ~example, where R = a, the prescription 

(4. 6) gives 

as(t) = 0.83 + 0. 37t + O(t2) 

and 

Y2 *$O) = 1.41 y2,,(0) 

(5.4) 

(5.5) 
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Prescription (4. 7), on the other hand, gives 

cup) = 0.87 + 0.37t + o(t2) (5.6) 

and 

Y2 sT$(t) = 1.50[1 - 0.79t + o(t2)]y2T& (5.7) 

These results are fairly close to each other. 

Eqs. (5. 5) and (5. 6) both give trajectory slopes which are much 

smaller than those for the Reggeon. This result is one of the main successes 

of the dual multiperipheral model and follows from the relative t dependences 

of Eqs. (4.3) and (5. 2). Previous multiperipheral models gave excessively 

large Pomeron slopes ~ 

There is only one real solution to Eq. (3. 13) with (Y = (~6 > 0. This 

means that we do not generate an output f trajectory along with the Pomeron. 

Gn the other hand, the latter has an intercept at a;(O) = 0.85 rather than 

at ~~(0) = 1. It must therefore be considered as some kind of average 

of the conventional P and f. The extensive phenomenological fits of Dash 

and Bali 
14 

show that this kind of trajectory is quite capable of accounting 

for the data at moderate energies. It fails, of course, at higher energies, 

but we shall see that other effects come in in this region. 

If we combine Eqs. (5. 3) and (4.4) we obtain 

aA - u 
P f 

SR Yll’gt)/Yll’f (t) = cp)/Cf(t) , (5.8) 
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a result which is independent of FR(t). Since c$/cf is independent of 

the external lines, Eq. (5.8) is in effect a generalized version of f/P 
cl* - (Y 

universality 15 ; m the conventional version the factor s 
P f 

R does not 

come in. We can therefore obtain the G/f ratio from the corresponding 

ratio for ~TTI scattering, where R = a. Thus 

*(t)hii,f 
Gf - cu/’ 

Yil’P (t) = bR/Sa) PyilnyyTnf (5.9) 

For pp scattering the cluster R is presumably the nucleon and so sR = m 
2 

~ 
P 

VI. POMERON PARAMETERS IN THE TWO-CLUSTER MODEL 

Up to now we have only considered the production of a single type of 

cluster of (mass l2 = sa z 0.5 GeV’. Suppose now that we have a second 

cluster of (massI =s b = 1.5 GeV2, which corresponds to the f, B, D 

and A2 resonances. We must then replace Eq. (3. 1) 

V(t, S) + rad(s - sa) + rb b(’ - ‘b) 9 (6.1) 

which in turn means that we must make the replacement 

s -j - 1 
Fact) - sa 

-j -1 
a F,(t) + sb -j -‘Fb(t) (6.7.) 

in Eqs. (3.4), (3.6)and (3. 12). 

The factor Fb(t ) can also be calculated by considering either TT~T 

or Reggeon-Reggeon scattering. 
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(A) If we take the difference between an FESR (4.5) with N = 4s 
a 

+ +t, 

which is midway between the f and g resonances and one with N = 2s 
a 

+ +t, 

which is midway between the p and f resonances, we obtain 

-1 LY +1 
+ tt, f 

(Y +i 
Fb(t) = (sb ++t, (4s, - (2s, + it, f 1 /(ol, + 1) (6.3) 

(B) If we follow the same procedure for Reggeon-Reggeon scattering, 

we have, instead, 

Fb(t) 2: sb 
LYCh) a - ec + 1 

- (25,) 
m-CYc+i 1 I(@- UC +I) (6.4) 

We will see in Sec. VII that the second cluster (b) does not contribute 

at intermediate energies. We therefore expect the one-cluster results 

of Sec. IV for the parameters k0, 7, x(O), x’(O) to continue to apply, since 

Reggeons are important only at those energies. On the other hand, both 

clusters must be included if we want to calculate the Pomeron (P) at very 

high energies. If we therefore take R = a, and use Eqs. (3. 13), (3. 16), 

(5.2) and (6.2) with (Y = ap, and Eqs. (4.7) and (6.4) for Fa and Fb 

(Prescription B), we obtain 

op(t) = 0. 98 + 0.38t + O(t’) (6. 5) 

Y TTP2(t) = 1.50[1 - 0.79t + o&21,1,f(t) (6.6) 
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for ~l~i scattering. It is straightforward to show that a modified f/P 

universality continues to hold, with 

Y1i’p(t)hil’f (t) = bR/Sa) “f - upYTrp~YT, 

instead of Eq. (5.9 ). Eq. (6. 7) then permits us to calculate the P/f 

ratio for any other process. 

In the above calculation we continued to assume that there is only 

one end cluster A. At high energies, we may expect more. If so, we must 

make the replacement 

SR 
-j - ‘F,(t) * -j - *F,(t) 

and similarly for Q. This would change our couplings but not our trajectory 

@P’ 

The trajectory intercept in Eq. (6. 5) is higher than in the one-cluster 

case, although the slope is not very different. It should be emphasized, 

however, that this trajectory is only relevant asymptotically. In the 

next section we will investigate what happens at finite energies for pp 

scattering. 
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VII. THRESHOLDS OF THE POMERON 

Up to now we have only considered the leading (real) j-singularities 

generated by our models. However, because of factors like (sax)-] in 

the D functions, we also have an infinite set of complex poles in the 

j-plane. These in turn lead to oscillating cross sections at intermediate 

as discussed by Chew, Snider and Koplik. 16 
energies, 

(a) In the one-cluster model, an alternative way of seeing how 

oscillations arise is to directly take the Mellin transform of Eq. (3. 5) 

with B given by Eqs. (3. 6) and (3.8). The individual terms in the expansion 

2 2 
(3.6) then lead to thresholds in A at s = sR2x, sR x sa, . . . , corresponding 

to the production of 0, 1, . . . a-clusters. Since sa is small, the resulting 

oscillations damp out fairly rapidly as we go up in energy and should be 

negligible in the region where Regge phenomenology is normally applied. 

It is therefore a good approximation to keep only the leading singularity, 

so that 

cG2(t) aA - j 
B = B$(t, j) = 

J - a$ 
xp (7.1) 

The factor x 
~2; - j 

was inserted to guarantee that the threshold of B(t, s) 

occurs at s =x, as required by Eqs. (3.6), (3.8) and (3.9). 

(b) In the two-cluster model, additional thresholds arise from the 

production of b clusters. We shall see that the first such threshold occurs 

in a region where a Regge description is normally used and where any 
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oscillations arising from the a-clusters have already damped out. We 

shall also see that it does have an important effect on the energy dependence 

of the cross section. The oscillations arising from any subsequent thresholds 

will be seen to be negligible, however. 

In the case of pp scattering, we must replace Eq. (3. 5) by 

A(t, j ) = YZppftSR ‘-j-IF ’ ) R (t)Bp(t, j) (7.2) 

where R is a baryon, and BP is given by the diagrams of Fig. 8. If we 

again apply the duality relation (2.3 )(Fig. 5) we have 

Bp(t, j) = Bfi(t, j) + Bfi(t, jJFbttJSb -j - $(t, j)+... (7.3) 

If we now make the approximation (7.1) for the one-cluster function B$, 

and use Eq. (5. 3) we obtain 

A(t,j) = y2 Act 1 
PPP 

where 

f~fi - j 
2 P 

oA _ 

(s xl R 
+ 77(t) 

(SR2X2Sb) p 
J 

+ 
j P - (YA 

(j - me)2 
. . . 

r?(t) = c$2(t)s, 
-cf$ - 1 

Fb(t) 

The Mellin transform of Eq. (7.4) gives 

(7.5) 

fi2(t )s 
CYA 

A(t, s) = 
P 

Y 
PPP i 

e(s - SR 2~) + r) ln(s/sR 
22 2 

x sb )0(S - sR2x2sb) + . . . 
> 

(7.6) 
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so that we have thresholds at s = s 
2 

R x, S R 2X2S 
b’ **’ 

corresponding to 

the production of 0, 1, . . . b-clusters. 

-1 
In Fig. 8 we plot the total cross section (T= s A (0, s) obtained 

from Eq. (7.6). The solid line corresponds to taking sR z m 
2 

and 
P 

using Eqs. (4.6) and (6. 3) (Prescription A) whereas the dashed line 

corresponds to taking sR z 1 GeV2 and using Eqs. (4. 7) and (6.4) (Prescription 

B). These are compared with the experimental i (o + o -), a combination 
PP PP 

which is essentially the vacuum-state contribution to the pp cross section 

and would conventionally be described by P + f. We see that our description 

2 2 
is equally acceptable. For s < sR x sb (‘2: 45 GeV’), o as 

q(O) - 1 
with 

Q+(O) Y 0.87 which lies between the conventional a,(O) and cuf(0), whereas 

2 2 
for s > sR x sb we have a cross section which is well approximated by 

its asymptotic behavior o a S 

@,(O) - 1 
with cup(O) = 0.98 (using Prescription 

B). It should perhaps be emphasized that the rather sharp threshold 

in our model is not an essential feature of our approach and would be 

smoothed out in a more realistic model, e.g. one with additional end 
\ 

clusters, or clusters with some spread in their mass. 

We could always add in a third cluster c in our model, with 

sc Y 2.5 GeV2, which would correspond to the g, p’. A3 and ~(1675) 

peaks. It is not clear that this would be a valid procedure, however, since 

such a state is presumably already included in some average way in the 

aa state and double-counting may occur. 1 ’ If we nevertheless include it 

we obtain the dotted line of Fig. 8 instead of the corresponding solid line. 
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In Fig. 8, the overall magnitude (or y A21 was fitted to the data, 
PPP 

but the shape is completely predicted in our model. In Sec. IX we will 

also calculate this overall magnitude. 

VIII. DIFFRACTIVE CORRECTIONS 

Up to now we have only considered the multiperipheral component 

of the Pomeron and have completely ignored the effect of diffractive 

corrections. A complete treatment of this would have to involve the full 

machinery of the Veneziano i/N expansion. 
10 

At intermediate energies, 

however, one can get a reasonable estimate of such effects from the 

usual diffractive diagrams of Fig. 10, where cc is in fact the final corrected 

effective Pomeron for the energy range being considered. 

For pp scattering the intermediate vertical lines in Fig. 9 represent 

:I< 
nucleons and N resonances, as well as background effects. We will use 

average duality to replace one of these by Regge exchange. In our model 

this would just be cc exchange so that we finally have the diagram of 

Fig. 11, which would be the dominant correction at moderate energies 

and corresponds to single diffractive dissociation (Double diffractive 

dissociation is not expected to contribute until we reach much higher 

i AR 
energies ). This diagram is governed by the PcPcPc triple-Regge coupling 

and gives a contribution to the total cross section of 
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OD = 2 Ji2 dRym> ,,“,“,2 
0 

(8.1) 

where the factor of two arises from the fact that both right- and left-hand 

h 
clusters can be replaced by P exchange, sr < Ii?2 corresponds to the 

region of validity of the triple-Regge description (we take r = 0.2), and 

do 

dt dM2 

2+ (t) QpA (0) 
c (iT12) c (8.2) 

Here z2 =M2-m 2 
-t, iKo 2. 

P 
is the corresponding threshold value (so 

no2 
A A A 

= 0), and G(t) is proportional to the PcPcPc triple-Pomeron coupling. 

We took G(t) from the phenomenological fit made by Dash to the pp -pX 

data in the triple-Regge region. 14 4t This gave G(t) = 2000 e . 

From Eqs. (8.1) and (8. 2) we obtain 

tic (0) - 1 

o’D 
ZLS c (8.3) 

where L is an integral over G(t) and has the value L = 62.9. We therefore 

see that the diffractive contribution cannot change the energy dependence 

obtained from the multiperipheral contribution but does increase the overall 

magnitude. 

In the above calculation we applied local duality down to very low 

::: 
subenergies when we replaced the N and N with Regge behavior. We 

repeated the calculation with Fig. 10(a) evaluated directly and only Fig. 

10(b) replaced with Regge behavior. The latter contribution is then given 
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by Eq. (8.1) but with MO2 taken at the rrp threshold, which lies roughly 

* 
halfway between the N and N (1236) resonance. We found that the results 

were almost identical with the ones obtained in the previous paragraph. 

IX. OVERALL MAGNITUDE OF THE VACUUM-STATE 
CONTRIBUTION TO THE CROSS SECTION 

We will now use our model to calculate the overall magnitude of 

0 
v = fkp + app)’ which is essentially the vacuum contribution to the 

pp cross section. Breaking this up into the multiperipheral and diffractive 

components we have, from Eq. (8.3), 

G;(o) - 1 
0 

V 
= (Y2pp# + Lb (9.1) 

2 2 
for s < sR x sb. If we compare this with the data at, say, s = 20 GeV2, 

we have y 
2 A z 110 (in GeV units) if we take cu$(O) = 0.87. 
PPF 

We will now 

calculate y 
2 

fi from two different starting points. 
PPF 

(I) We will first calculate y2ppG from 0 which is w = +(gp - opp), 

dominated by w exchange. Exchange degeneracy then gives 

2 cuf(0) - 1 
0 = 0 

w f = y ppfS (9.2) 

At s = 20 GeV2, for example o, 5: 7.5 mb, which gives y2 
PPf 

= 84. From 

Eqs. (5.7) and (5.9) with sR/sa z P2!mp2 , we then obtain y 
2 

m f5-z 92.4, 
PPP 

which is in fairly good agreement with the empirical value obtained above. 
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The above calculation assumes that the w trajectory is unmodified by 

the inclusion of crossed loops. This is in fact the case in the limit of 

exact SU(3 ). ’ If SU(3) is broken, it is no longer exactly true but the 

modification of the o still appears to be small compared with that of the f. 

This is true, for example, in the Chew-Rosenzweig model of ref. 7. Our 

procedure should therefore continue to be reasonable, at least in some 

approximate sense. 
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(2) We will next calculate ynrp fit from the p resonance with our model 

and then use the quark model to relate this to y ppf;’ If we use the finite 

energy sum rule (4.5) in the It = 0 ‘IT’IT state with N = 2 sa and assume 

that A(t, s) is dominated by the p resonance with width 0. 15 GeV, so that 

A is given by Eq. (3. I), we immediately obtain y + + (0). From Eq. (5.7) 

2 rrrrf 
we then obtain y + +A = 31.2. If we now use the quark-model result 

OPP = Z. oTTT we ~&i’, y2 AZ9 2 
4 ’ PPP zy + +A = 70. 2, which is somewhat small 

lTTiP 
compared with the above empirical value. 

The most dubious aspect of the above calculation was its assumption 

that the p resonance dominates in the region s 5 1 GeV2, whereas it is 

known that the E peak is also important in this region. One way of 

rectifying this situation is to apply our FESR in the s-channel Is = 1 

state, where the E is then absent, rather than in the It = 0 state. The 

Regge term on the right side of Eq. (4. 5) must now include p exchange 

as well as f exchange. If we assume that y 
r=P 

and y 
rrrrf 

are related by 

exchange degeneracy, however, we again obtain y + + , and hence y h 
llnf HltP 

from Eq. (5. 7). This gives y2 It=2 2 
ppP 4y + +fi = 105, which is in good 

n-ll 
5 agreement with the above empirical value of y A = 110. 

PPF 



-25- FERMILAB-Pub-761 56-THY 

X. CONCLUSION 

We have used a dual multiperipheral model to calculate a priori the 

parameters of the vacuum singularities. We first used a description in 

which only a single low-mass cluster with (mass l2 = 0.5 is produced. 

This gives a behavior which can be described on the average by a single 

effective vacuum singularity at oP A = 0.85, and is valid below the threshold 

for the production of higher clusters. We found that if we included a 

second cluster with (mass)2 = 1. 5, we obtained a cross section which 

flattened out for s ,? 50 GeV2. We thus have a parameter-free cross 

section which is very similar to the one given by the conventional P + f 

description. 

The model we have used is, of course, an oversimplification. In 

a complete picture we would presumably have more than two clusters 

produced, as well as some spread in the mass of each. This would mainly 

have the effect of smoothing out the thresholds we obtain but is not expected 

to change our main conclusions about the energy dependence of the cross 

section. Another simplification was to approximate our Reggeon exchanges 

with a single effective trajectory (Y = 0.25 + t. In a more correct treatment e 

we should have a Reggeon with LY = 0. 5 + t and a pion with (Y = t coming 

in explicitly. 

We have used a rather simple-minded multiperipheral model in which 

threshold effects had to be put in by hand through a factor x-j. In a more 
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complete treatment they would arise naturally. This happens, for example, 

in the pion-exchange model (see Appendix A), and would also occur in any 

other model in which the momentum transfers are limited. 

We have neglected anti-baryon production in our model, which may 

play an important role for s 2 200 GeV‘. Duality schemes generally 

have problems when they are applied to baryons, however, and so our 

framework may have to be modified in this energy region. 
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APPENDIX A. THRESHOLD FACTORS IN AN 
EXPLICIT PION-EXCHANGE MODEL 

We will now see explicitly how threshold factors, such as the one 

in Eq. (3.8), arise in the case of the Amati-Bertocchi-Fubini-Stanghellini- 

Tonin (ABFST) pion-exchange model. 
1, 18 

Similar factors are expected 

to arise in a Reggeon-exchange model. 

It is possible to partially diagonalize the ABFST equation by using 

the transform 

AX(rl> TV) = 2 dse 
-(X3- iJets, Ti’ T2) 

A@, T IT2) (A. 1) 

TT 

of the forward off-shell TT’IT scattering amplitude A(s, T*, -i2), where 

fii and 5 are the off-shell pion masses and 

-0 6, Ti’ T2) 2dTpr-T2 
e = 

(s T2) + (s - 7 T2j2 4TiT2 1 II 2 . (A.21 - 
T1 

- - - 
1 

The forward ABFST equation then takes on the form 
18 

AX(y 72) = VX(T*T2) + 
1 

16n3(x+ 1) I 
0 

dr’ 
2 2 vAhl> “)AhW> TV) . (A.3) Am - 

lr 

7’) 

If we assume the production of a single cluster, Eq. (3.1) gives 

V(s, Ti’ T2) = V(-r1x,(T2) us - s,). (A.4) 
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assuming factorization, which, as we saw from Eq. (2. 31, is demanded 

by duality. 

Suppose we assume that the off-shell behavior is such that the 

7 I 7 1 2 
are limited. This would be true, for example, with a Benecke-D&-r 

off-shell factor, which works so well in accounting for pion production 

in the single pion-exchange model. Then, if sa >> TV. TV, we can make 

the approximation 

-@b. 71. T2) y fi hjF/s 
e 1 2 a 

Eq. (A. 3) can now be solved exactly and gives 

AirI, r2) = Vx(~t, r21/DX 

(A. 51 

(-4.6) 

where 

DA 
= I- d-r’ 

2 
- .,I)2 

Vx(T’* 7’) (A.7) 

TT 

and 

Vx(T1> T2) = V(Ti) V(T2)Sa -x - l’q G,)X+ i (-4.8) 

The simplest kind of off-shell behavior we can have which at the 

same time limits 7i and -r 2 corresponds to taking 
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v(T) = v. e( T+T) (A.9) 

2 where 6 is the usual step function. If we neglect mTi , Eq. (A. 7) then 

reduces to 

DA 
: I- (A. 40) 

This basically has the structure of Eqs. (3.12) and (3.8) if we identify x 

with j, except for the extra factor of A in the denominator, which arises 

only because we set mrr2 = 0. Another possible form is 

V( 7) = voe 
T/ 2T 

(A. 11) 

If we again neglect m 2 
we obtain r 

DA 
= I- 

vo2sa-h) k -x 
16rr3(x+ 1) ! ) (A. 12) 

which also has the same kind of structure as Eqs. (3. 12) and (3.8). 
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APPENDIX B. ALTERNATIVE CALCULATION OF ; 

We will now present an alternative calculation in which we first 

sum over the uncrossed loops to obtain the amplitude Af of Sec. IV, which 

is dominated by f exchange at high energies. We then treat Af itself as 

a cluster linked by the crossed propagators of Eq. (2.1). This is similar 

in spirit to the treatment of Chan et al. 6 
We do not, however, go to the 

ultimate duality limit of actually replacing Af by a Reggeon. We have already 

seen that the resonance nature of the clusters plays an important role in 

determining the nature of the behavior of the cross section. 

If we apply Eqs. (3. 5). (3.8), (3. 10), (3. 11). (3.12)and (5. 1) to 

ells scattering, we can write 

Af(t, j) 
A$@, j) = 1 _ [K# - Kf (t, j)]Af(tl I) (B.1) 

where KS and Kf are given by Eq. (3.8) with k = k$ and kf corresponding 

to Eqs. (4. 3) and (5. 2), and Af is given by Eqs. (3.8), (3. lo), (3. ii), 

(3.12) and (4.1). If we expand the denominator of Eq. (B. 1) we obtain 

the diagrams of Fig. i2. The Af now play the role of generalized clusters 

which are linked by crossed Reggeon lines giving the (Kc - Kf) factors. 

Chan et al essentially replaced Af by a simple Regge pole. This 

approximation is rather crude. To take better account of the structure of 

Af we assumed instead that it is dominated by an a-cluster for s 5 1 GeV2 

and by f-exchange for s > 1 GeV2. Using Eq. (2.3). we then have 



-31- FERMILAB-Pub-761 56-THY 

Af(t, j) = yZirrrf(t) 
1 

-j -1 1 a -j 
F,(t)s +-N f 

a j-of 
(62) 

and N II 1 GeV’. Eq. (B. 1) now gives rise to an output pole at the point 

j = (Y$ where the denominator vanishes. If we calculate the corresponding 

residue y2,mp ‘\ we obtain cr$(O) = 0.88 and y2Vr$y2nrrf(0) = 1.54 with 

Eq. (4.7) for Fa (Prescription B). These results are almost identical 

with Eqs. (5.6) and (5. 7). 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

FIGURE CAPTIONS 

Multiperipheral model for the production of clusters. 

Two-body absorptive part given by Fig. 1. 

Uncrossed (planar) quark-duality diagram. 

Nonplanar quark-duality diagram with crossed and uncrossed 

loops ~ 

Average duality relation between cluster (a) and Reggeon (b). 

Absorptive part A arising from the production of a-clusters. 

Function B obtained after factoring out end-clusters as in 

Eq. (3. 5). 

Function B = BP for a- and b-cluster production in terms 

~of the function B = B$ for a-cluster production. 

The vacuum-state contribution to the pp total cross section. 

Diffractive contributions to the absorptive part. 

Triple-Pomeron contribution to the absorptive part. 

Absorptive part with crossed loops linking the functions 

Af generated by summing all uncrossed diagrams. 
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